

UGANDA BUSINESS AND TECHNICAL EXAMINATIONS BOARD

	17	harden and her	
PAPER CODE	PROGRAMME	DATE	
TDIT 112	NATIONAL DIPLOMA IN INFORMATION AND COMMUNICATION TECHNOLOGY YEAR I SEMESTER I	TUESDAY, 3RD DECEMBER 2019	
SERIES	PAPER NAME	TIME ALLOWED	
NOV/DEC 2019	COMPUTATIONAL MATHEMATICS	3 HOURS	

YOU SHOULD HAVE THE FOLLOWING FOR THIS EXAMINATION

Answer Booklet (2) In the State of the doubles

Non-Programmable Electronic Calculator

Graph Paper

Mathematical Tables

Drawing Instruments

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of eight questions.
- 2. Answer only five questions.
- 3. All questions carry equal marks.
- 4. All answers to each question should begin on a fresh page.
- 5. Do not write anywhere on this question paper.
- 6. All rough work should be done in the official answer booklet provided.
- 7. Read other instructions on the answer booklet.

Question One

(a) **Fig. 1** shows a circuit diagram, write down the Boolean function and simplify it to its equivalent circuit.

Hence draw the simpler equivalent circuit.

(10 marks)

(b) Test the validity of the Boolean statement below;
"If he gets a degree, he will get a good job. If he gets a good job, he will buy a car.
He does not buy a car, therefore he has not got a degree. (10 marks)

Question Two

- (a) The Cartesian product of two sets A and B is written as $A \times B$ and is the set of all possible ordered pairs (x, y) where $x \in A$ and $y \in B$. Sets A and B are given as follows; $A = \{1, 2\}, B = \{2, 3, 4\}$ Find the Cartesian product of A and B. (03 marks)
- (b) Four members of the Cartesian product of two sets **P** and **Q** are (2, 1), (2,3), (4,1) and (4,5). If there are a total of six such ordered pairs in the Cartesian product $P \times Q$. Find the;
 - (i) two missing members of $P \times Q$. (03 marks)
 - (ii) elements P and Q. (01 mark)
 - (iii) Ordered pairs (x, y) such that $x \in P$, $y \in Q$ and x is less than y. (03 marks)
- (c) The function $f(x) = \frac{a}{x} + b$ is such that $f(-1) = 1\frac{1}{2}$. f(2) = 9
 - (i) Find the value of a and b (04 marks)
 - (ii) Evaluate f(4) and $f^{-1}(4)$ (04 marks)
 - (iii) State the value of x for which f is not defined. (02 marks)

Question Three

- (a) Solve the equations
 - (i) $9 \times 3^{4x} = 27^{x-1}$
 - (ii) $(3^x)^2 12 \times 3^x + 27 = 0$ (04 marks)
- (b) Simplify the equation
 - (i) $\left\{ \left(\frac{x^4}{9} \right)^{1/2} + \left(\frac{x^6}{8} \right)^{1/3} \right\}^{1/2}$ (03 marks)

(ii) Show by simplifying that:
$$\frac{x-1}{x^2-1} = x^{1/2}$$
 (04 marks)

Given that: $y = 97 + 56\sqrt{3}$. Find the square root of y. (c)

(05 marks)

Question Four

Define a singular matrix as used in matrices. (a) (i)

(01 mark)

Given that $A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 5 & 3 \\ -1 & 8 & 2 \end{pmatrix}$ Show that matrix A is a singular matrix. (ii)

(02 marks)

Solve the following set of linear equation by matrix inversion. (b)

$$x_1 + 3x_2 + 2x_3 = 3$$
$$2x_1 - x_2 - 3x_3 = -8$$

(12 marks)

 $5x_1 + 2x_2 + x_3 = 9$

Solve the equation (c)

$$\begin{bmatrix} x & 2 & 3 \\ 2 & x+3 & 6 \\ 3 & 4 & x+6 \end{bmatrix} = 0$$

(05 marks)

Question Five

- Explain the meaning of the term conditional probability of event A given (a) (02 marks) event B.
 - State the conditions for A and B to be independent. (ii)

(01 mark)

Table 1 shows the records from an assembling factory for smart phones with four (b) assembling lines; A_1 , A_2 , A_3 and A_4 . The table shows the percentage of faulty phones produced per line, and the percentage of the total output produced per line.

able 1		Total Park	1	
Line	A_1	A_2	A_3	A_4
Faulty phones (%)	1	3	2.5	2
% of total output	35	20	24	21

Determine the probability that

A phone chosen at random from a whole output is faulty. (03 marks) (i)

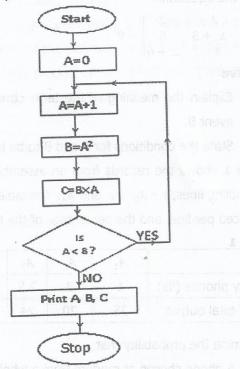
(02 marks) A phone is faulty and comes from A1 (ii)

(02 marks) A phone is faulty and comes from A2 (iii) (02 marks)

A phone is faulty and comes from A3 (iv) (02 marks) (V)

A phone is faulty and comes from A4

(c) Two events A and B are independent given that $P(A \cap B') = \frac{1}{4}$, and $P\left(\frac{A'}{B}\right) = \frac{1}{6}$.


Find;

- (i) P(A) (01 mark)
- (ii) P(B) (01 mark)
- (iii) $P(A \cap B)$ (02 marks)
- (iv) $P(A \cap B')$

You may use a Venn diagram in your answer.

Question Six

- (a) Define the term **algorithms** as used in flow charts. (01 mark)
- Draw a flow chart that reads and prints the mean of the first twenty counting numbers. (10 marks)
 - (c) Given the flow chart below;

Use the flow chart above to perform a dry run and use it to state the relationship between;

- (i) A and B
- (ii) A and C

(09 marks)

Question Seven

(a) Given that $A = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 1 & 0 \\ -2 & 1 & 3 \end{pmatrix}$ $B = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$

Evaluate $\it AB$ hence solve the simultaneous equations by matrix inversion method.

$$3x + y + 2z = 11$$

$$3x + 2y + 2z = 10$$

$$x + z = 5$$

(09 marks)

(b) Given a matrix $A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -2 \\ 1 & 3 & 1 \end{pmatrix}$

Use the minor cofactors (Gaussian Jordan) method to find the inverse of A_{\cdot}

(11 marks)

Question Eight

(a) A computer dealer imports 40% and 60% of spare parts from countries A and B respectively. The percentage of parts produced defective in the countries are 0.3 and 0.5 respectively.

A spare part is drawn at random from a sample of parts imported from A and B. Find the probability that;

(i) It is defective and it is from country B.

(05 marks)

(ii) It is defective.

(03 marks)

- (b) Four competitors throw a die in turn. Determine the probability that;
 - (i) they all score more than 4.

(04 marks)

(ii) two get less than 3.

(04 marks)

(iii) the total score is 23.

(04 marks)

END